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A case is made for the use of hierarchical models in the analysis of generalization

gradients. Hierarchical models overcome several restrictions that are imposed by

repeated measures analysis-of-variance (rANOVA), the default statistical method in

current generalization research. More specifically, hierarchical models allow to include

continuous independent variables and overcomes problematic assumptions such as

sphericity. We focus on how generalization research can benefit from this added flexibility.

In a simulation study we demonstrate the dominance of hierarchical models over

rANOVA. In addition, we show the lack of efficiency of the Mauchly’s sphericity test in

sample sizes typical for generalization research, and confirm how violations of sphericity

increase the probability of type I errors. A worked example of a hierarchical model

is provided, with a specific emphasis on the interpretation of parameters relevant for

generalization research.

Keywords: stimulus generalization, repeatedmeasures ANOVA, hierarchical (linear) models, individual differences,

R, lme4

1. Introduction

Conditioning can be defined as changes in behavior that result from regularities in the environment
(De Houwer et al., 2013). Generalization helps to functionally adapt behavior, as it allows
appropriate treatment of novel stimuli based on experience with related stimuli. Generalization
occurs when a conditioned response (CR) is triggered by a stimulus that is different from the
original conditional stimulus (CS; Vervliet et al., 2006). Guttman and Kalish (1956) were one of
the first to investigate generalization after conditioning. They trained pigeons to peck at a colored
key (i.e., conditioned stimulus; CS+). The frequency at which pigeons picked at keys of differed
colors (i.e., generalization stimuli; GSs) was assessed after the learning task. They found that the
response strength increased as a function of the similarity between the conditioned color and the
test colors. This function is known as the generalization gradient (Shepard, 1965).

The current surge of renewed interest in generalization is largely motivated by its involvement
in psychopathology. Generalization is, for example, the core aspect of what makes anxiety disorders
so impairing: Fear does not remain specific to a single stimulus paired with danger but generalizes
to a broad set of stimuli. A war veteran might, for instance, start to respond fearfully to anything
remotely sounding like a gunshot, making life nothing short of unbearable (Dymond et al., 2014).
Explaining individual differences in generalization is one of the central topics in this literature,
because these differences presumably explain differences in the vulnerability to, andmaintenance of
psychopathology (Dymond et al., 2014). For example, Lissek et al. (2010) foundmore generalization
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in a group suffering from panic disorder compared to healthy
controls. Lommen et al. (2010) found that individuals high in
trait neuroticism generalized more than individuals low in trait
neuroticism. Lenaert et al. (2012) demonstrated that overgeneral
autobiographical memory is related to differences in generalized
responding by showing that participants with limited memory
specificity generalized more. It is clear that experimental and
individual factors affect the generalization gradient.

In recent studies, generalization gradients are typically
analyzed by means of repeated measures Analysis-of-Variance
(rANOVA). However, rANOVA has several limitations for this
type of data. In this article we therefore propose hierarchical
models as an alternative for rANOVA, with a specific application
for generalization research. The use of hierarchical models in
psychology in general is not new and is already well documented
(e.g., Baayen et al., 2008; Kliegl et al., 2010; Barr et al., 2013). We
will highlight some of the limitations of rANOVA and discuss
the relative strengths of hierarchical models. In a simulation
we will demonstrate the drawbacks of rANOVA. After this
simulation study a worked example of a hierarchical linear model
is provided.

2. Repeated Measurement Models

2.1. Repeated Measures Analysis-of-Variance
rANOVA is an extension of analysis-of-variance (ANOVA) and is
used to compare groups on a variable that is measured repeatedly
(Girden, 1992). In generalization research the (dependent)
variable is measured repeatedly, because the responses are
recorded over the full stimulus dimension (i.e., CS+ and GSs)
for every subject. This stimulus dimension is included as a
within-subject factor in the rANOVA model. The individual
differences variable (e.g., high/low memory specificity, high/low
neuroticism, diagnostic status, age, gender) is typically included
as a between subjects factor (e.g., Lissek et al., 2008; Lommen
et al., 2010; Dunsmoor et al., 2011; Lenaert et al., 2012)
to investigate differences in generalized responding. Although
rANOVA corrects for the repeated measurement nature of the
data, it comes with several limitations. In the next paragraph we
will discuss three limitations of rANOVA.

First, rANOVA handles the stimulus dimension as a factor
with n-categorically different levels, with n referring to the
number of stimuli included in the design. Treating the stimuli
as categorically different is not always warranted. Shepard (1987)
and Tenenbaum and Griffiths (2001), for example, state that
the stimuli underlying generalization come from a continuous
metric psychological space. Inspection of the stimuli used in
generalization research gives support to this dimensional claim.
Examples of often used stimuli are: different shades of gray
(Lommen et al., 2010), circles that differ in circumference (Lissek
et al., 2008), and morphs between two faces (Lenaert et al.,
2012). Including the stimulus dimension as a categorical factor
additionally brings about an excess use of degrees of freedom in
the model. Therefore, from a statistical standpoint a continuous
treatment is more parsimonious.

Second, rANOVA is inflexible in modeling and testing for
continuous individual differences, because of the inability of

rANOVA to handle continuous independent data. However,
independent measures in generalization research are typically
continuous or ordinal (e.g., neuroticism or autobiographical
memory specificity scores). To conform to rANOVA these
variables are transformed into a categorical variable. Categorizing
a continuous predictor is advised against, especially in the case
of an independent variable: this practice creates a severe loss
of information, reduced power, and an increased probability
of Type II errors (Maxwell and Delaney, 1993; Taylor and Yu,
2002; Royston et al., 2006). Including this categorical variable
in interaction with the n-levels of the stimulus dimension, to
test for group differences in generalization, leads to an excess
growth of used degrees-of-freedom. On top of these technical
considerations, the choice of an ideal cut-point for categorizing
the continuous predictor can be subject to exploratory behavior,
referred to as researchers degree of freedom by Simmons et al.
(2011). This can lead to biased parameter estimates and
erroneous conclusions.

Third, some of the assumptions that come with rANOVA
are problematic for generalization research. Sphericity is the
most important assumption. Sphericity refers to the situation
where the variances of the differences between all pairs of
stimuli are equal. This is generally interpreted as the demand
of equal variances within the stimuli, and equal correlations
between all stimulus pairs (Huynh and Feldt, 1970). Within
generalization this implies that we assume that the relationship
between all pairs of stimuli are equal. More specific, if we
were to take each pair of stimuli from the used dimension and
calculate difference scores between each pair, then it needs to
hold that the variances of these pairs are equal. This assumption
is unrealistic when analyzing generalization gradients for three
reasons. First, sphericity is an unrealistic assumption for most
repeated measures data. O’Brien and Kaiser (1985) claim that
sphericity is commonly violated in most designs with more
than two repeated measurement. Generalization studies often
have multiple repeated measurements per subject. For example,
Lenaert et al. (2012) used 8 different stimuli, Lissek et al.
(2008) and Lommen et al. (2010) both use 10 different stimuli.
The lowest value (i.e., the lower-bound estimate) a sphericity
correction can adopt becomes smaller with an increasing number
of stimuli. The lower the value, the stronger the sphericity
correction will be. For example, the lower-bound correction with
10 stimuli is 1/(10 − 1) = 0.11, where every value smaller
than 1 would indicate a sphericity violation. Second, because
the CS+ and the CS− are training stimuli the variance around
these stimuli is smaller than for example, a GS that lies in the
middle of the continuum. Responses toward these GSs are more
uncertain and will trigger more variability in responding across
participants, see for example Figure 3 in Lenaert et al. (2012).
Hence, the difference score between the CS+ and the CS− will
be less variable than the difference score between the CS+ and
a GS. Third, sphericity contradicts our understanding of how
individual differences are manifested in generalization gradients:
For example, we expect that subject with certain traits (i.e., low
memory specificity, high anxiety, high neuroticism) will respond
differently toward some stimuli (e.g., GSs close toward the CS+)
but not so toward other stimuli. This will create patterns in the
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data that violate sphericity. As a result, the research question of
interest in current generalization research implies a violation of
sphericity. Violations of this assumption compromise the results
of a rANOVA and will lead to inflated F-values for omnibus
tests for main effects and interactions involving the within-
subjects factor (Box, 1954; Huynh and Feldt, 1976). The use
of rANOVA to analyze data that violates sphericity will use a
Type I error rate that is higher than the suggested alpha level
of the test (e.g., Hearne et al., 1983). Mauchly (1940) proposed
a significance test for evaluating the sphericity assumption. A
correction (e.g., Greenhouse and Geisser, 1959; Huynh and Feldt,
1976) is necessary to account for these inflated F-values when this
test indicates a violation.

In the next section we will introduce the hierarchical
framework with a focus on linear models. We will provide a
short introduction and discuss how these models can overcome
the limitations that are imposed by rANOVA in the context of
generalization research.

2.2. Hierarchical Linear Model
Hierarchical Linear models (HLM) offer an alternative for the
analysis of repeated measures data. The HLM framework uses
the notion of levels to indicate clustering in the data. This
clustering is caused by repeated measurements (i.e., level-1) for
every subject (level-2) within generalization research. HLM is
an extension of regular regression analysis where regression
parameters are allowed common to all subjects (i.e., fixed
effects) together with parameters that model these subject-
specific deviations (i.e., random effects). These random effects
account for clustering by explicitly modeling the individual
differences (Verbeke and Molenberghs, 2009).

Because explaining individual differences in generalization is
a central topic in the research literature about generalization,
we immediately introduce a random intercept/random slope
model that models the subject-specific gradient (i.e., individual
differences in the generalization gradient). Thismodel is given by:

Yij = β0i + β1idij + ǫij (1)

and

β0i = γ00 + U0i (2)

β1i = γ10 + U1i (3)

Where Yij is the response strength of subject i on stimulus j
from dimension dij. The intercept and slope parameters are given
by β0i and β1i. The residuals on level-1, ǫij, are assumed to be
normally distributed with a mean of 0 and variance σ 2, ǫij ∼

N (0, σ 2
ǫ ). The intercept β0j consists of a fixed part, γ00, and a

residual (i.e., random) part, U0i at the subject level. The same
holds for the slope parameter β1i: it consists of a fixed, γ10,
and a residual (i.e., random) part, U1i. The residuals error on
level-1 and level-2 are assumed to be independent. The residual
errors on level-2 have a multivariate normal distribution. Their
variance-covariance matrix is given by:

[

U0i

U1i

]

∼ N

(

[

0
0

]

,

[

σ 2
τ0

στ01

στ01 σ 2
τ1

]

)

. (4)

Where σ 2
τ0

is the variance for the intercept, σ 2
τ1

the variance for
the slope, and στ01 the covariance between the intercept and slope.
We will continue with the discussion of four advantages of HLM
for the analysis of generalization gradients.

First, HLM allows including the stimulus dimension as a
continuous variable. As discussed earlier, treating the stimulus
dimension as continuous is in line with theories of generalization.
On top of this theoretical argument, this strategy has a
technical advantage as well: Including the stimulus dimension as
continuous variable opens the possibility to describe non-linear
response patterns across the stimulus dimension (e.g., quadratic,
cubic, logarithmic, exponential) in a parsimonious way (i.e.,
without using an excess of degrees of freedom). However, if
theoretically warranted it is still possible to include the stimulus
dimension as a factor with n-levels.

Second, hierarchical models are flexible with respect to
modeling and testing individual differences. Including a variable,
ui, that is measured at the subject level in Equations (2) and
(3) leads to a model were individual differences in the intercept
and slope can be explained. Formally these level-2 models are
given by:

b0i = γ00 + γ01ui + U0i (5)

b1i = γ10 + γ11ui + U1i (6)

Where γ01 is the regression weight for ui in the intercept model,
and γ11 is the regression weight for ui in the slope model. More
specific, the γ01 parameter indicates the change in the intercept
for a one unit change in ui for subject i. This implicates that
subjects who score higher/lower on ui show a stronger/weaker
response to the CS+.

The γ11 parameter indicates the change for the slope with a
one unit increase of ui for subject i. This implicates, assuming
that the fixed slope effect γ10 is negative when modeling
generalization gradients (i.e., decline in response strength over
the dimension), a positive γ11 means that high scores on ui
have a less steep slope; a negative value for γ11 has the reverse
interpretation. These interpretations demonstrate that γ11 is of
special interest when modeling individual differences in the
generalization gradient.

Third, the assumptions of HLM are generally the same as for
standard regression models with the exception that observations
do not need to be independent. The random effects account for
this dependency. Violating the assumption of sphericity is of
no concern in HLM, because the variance and covariance that
cause sphericity are explicitly included in themodel (Snijders and
Bosker, 2012).

Fourth, hierarchical models can handle various data structures
as dependent variable. For continuous dependent variables
the HLM framework is suited. Generalized linear hierarchical
models (GLHM) can offer a solution when the dependent
variable is non-normally distributed. For example, the outcome
of approach/avoidance tasks are binomial distributed and the
GLHM can account for this through a link function. Different
link functions in these GLHMs can account for various non-
continuous data types (e.g., poisson link for count data, logit for

Frontiers in Psychology | www.frontiersin.org 3 May 2015 | Volume 6 | Article 652

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Vanbrabant et al. Modeling generalization gradients

binary data). For the interested reader, Tuerlinckx et al. (2006)
give an extensive review of GLHMs.

In the next section we will use a simulation to compare the
effectiveness of rANOVA and HLM for recovering a known
generalization effect. Special attention is devoted to the sphericity
assumption within rANOVA. We evaluate the effectiveness of
Mauchly’s sphericity test and demonstrate the effect of violations
on the obtained results.

3. Simulation Study

We conducted a simulation study to, in the first place, determine
the influence of the dichotomizing process on the recovery
rate of a true effect. For this reason we will compare a HLM
that includes a continuous individual differences variable with
a rANOVA that uses a dichotomized version of the original
individual difference variable1. Second, given that sphericity is an
unrealistic assumption in generalization research (see the third
point in Section on Repeated Measures Analysis-of-Variance) we
will to test how well Mauchly’s sphericity test behaves in samples
sizes typical for generalization research. It is already know that
the Mauchly’s test lacks power in small sample sizes. Afterwards
we compare the results of an uncorrected rANOVA with a
corrected ANOVA to inspect the differences in results when
the violation of sphericity is ignored. The data was simulated
according to a full random hierarchical model with the stimulus
dimension as within subject factor. The dimension consisted of
10 stimuli. A between subject variable was simulated to account
for the differences in generalization gradient. The simulation was
performed using R software (RCoreTeam, 2014) version 3.1.1.
Themodel can be found inTable 1 and computational details can
be found in Appendix.

Two variables were manipulated in the simulation study:
sample size and the effect size of the cross-level interaction
γ11. The sample sizes were based on what we found in the
generalization literature: n = 20 (Lissek et al., 2008), n = 38
(Lenaert et al., 2012), and n = 55 (Lommen et al., 2010). The
size of γ11 was fixed at 0.00 (i.e., absence of effect), 0.05 (i.e.,
moderate effect), or 0.10 (i.e., large effect). Finally, the simulation
was set to violate sphericity by sampling from an unstructured
covariance matrix with a significant random slope-effect. All
these manipulations combined led to 3× 3 = 9 conditions.

Every condition made use of 1500 simulated samples. In the
rANOVA model we were interested in the significance level
of the interaction between the stimulus dimension and the
dichotomized (based on a median split) individual differences
variable, ui. In the HLM the parameter of the cross-level
interaction between the stimulus dimension and the individual
differences variable, γ11, was monitored. The output of both

1It would be possible to include the individual difference variable as a continuous

covariate in a repeated measures analysis of covariance (rANCOVA). It is true that

we are comparing two different variables: a dichotomized variable vs. a continuous

variable. We do this because we want to compare current practice in generalization

research, which a more flexible HLM approach. We intentionally did not discuss

rANCOVA because this only offers a solution to one problem that arises when

using rANOVA and we believe that HLM offer a more flexible and thorough

approach.

the rANOVA and the mixed model were compared against a
α = 0.05 level. Mauchly’s test of sphericity will be reported
against a α = 0.05 level. We report the output from a rANOVA
that is not corrected for sphericity violations and an rANOVA
that is corrected. We followed the recommendations of Girden
(1992) and used the Greenhouse-Geisser correction (Greenhouse
and Geisser, 1959) instead of the lower-bound or Huyhn-Feldt
correction (Huynh and Feldt, 1976). The Greenhouse-Geisser
correction is less extreme than the lower-bound correction, but
less liberal than the Huyhn-Feldt correction, and specifically
suited for rather strong violations of sphericity or when there
is no information available on sphericity. Of course, every
repeated measurement design needs a proper evaluation of
which correction is ideally suited. A comparison of sphericity
corrections can be found in Collier et al. (1967).

The output of these simulations can be found in Table 2. In
this table we report the proportion of significance for the total of
1500 simulations per condition.

First, we conclude from Table 2 that the Mauchly’s sphericity
test is not effective in small sample sizes. When the sample
consisted of 20 individuals and there was no effect of the
individual differences variable, only 75% of sphericity violations
were flagged. Second, if the sphericity violation is ignored we
clearly see an inflation of type I errors (i.e., when γ11 = 0.00

TABLE 1 | Details of the simulated data.

Parameter Notation Parameter value

FIXED PARAMETERS

Intercept γ00 7.91871

Dimension γ10 −0.58322

u γ01 −0.37375

Dimension*u γ11 [0.00, 0.05, 0.10]

RANDOM PARAMETERS

Variance-covariance





σ2
τ0 στ01

στ01 σ2
τ1









2.5324 -0.46

-0.46 0.1345





Within-participants σ2
e 2.4348

TABLE 2 | Proportion of significance for sphericity-test at α = 0.05 and

interaction test at α = 0.05 for rANOVA and HLM.

n γ 11 Sphericity-test rANOVA Corrected rANOVA HLM

20 0.00 0.745 0.089 0.043 0.033

20 0.05 0.771 0.195 0.121 0.278

20 0.10 0.959 0.999 0.995 1.000

38 0.00 0.987 0.107 0.051 0.034

38 0.05 0.991 0.451 0.328 0.521

38 0.10 0.999 0.869 0.776 0.950

55 0.00 1.000 0.083 0.046 0.031

55 0.05 0.953 0.365 0.261 0.449

55 0.10 1.000 0.909 0.845 0.985

Mauchly’s Test for Sphericity was used. The corrected rANOVA made use of the

Greenhouse-Geisser correction. The cross-level interaction for the hierarchical model

were tested via a Wald-test.
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the acceptance rate of an effect was above the 0.05 level). Second,
HLM outperformed rANOVA in all 9 conditions. When the true
effect was absent (i.e., γ11 = 0.00) or large (i.e., γ11 = 0.10)
the mixed model outperformed the rANOVA model, but the
differences were small. The largest differences appeared when
there was a moderate effect (i.e., γ11 = 0.05). The HLM
was twice as effective as rANOVA when the effect sizes were
moderate, independent of sample size. When taking sample size
into account we demonstrated that both models benefited from
a sample size larger than 20 subjects. Again, this shows that
small sample sizes, even in experimental conditions, can hamper
scientific progress (e.g., Button et al., 2013). All evidence together
we can conclude that a hierarchical model clearly outperforms
(even) a well-executed rANOVA with respect to recovering the
true effect.

In the next part we will demonstrate through a worked
example how a HLM can be used to analyze generalization data.

4. Worked Example

4.1. Example Data: Generalization of Social
Exclusion
The considered experimental dataset comes from an unpublished
study conducted at the Center for the Psychology of Learning
and Experimental Psychopathology. Subjects were recruited from
a paid community sample. In total, 52 subjects (17 males)
participated and their median age was 18 (range: 18–49). The aim
of the study was to investigate if generalized responding could
be observed toward new stimuli (i.e., GSs) that were close in
similarity to a stimulus (i.e., CS+) that was continuously paired
with feelings of social exclusion (i.e., unconditioned stimulus,
US). Subjects played a game of Cyberball (Williams et al., 2000)
against two other virtual players. In Cyberball, a ball is tossed
around between three players: two virtual players and the subject.
In our version of the game one virtual player (CS+) always
excluded that subject from the game in order to induce feelings of
exclusion (US). The second virtual player (CS−) tossed the ball at
chance level toward the other virtual player or toward the subject.
This acquisition phase consisted of 100 ball tosses. Five features
characterized the virtual players: they were a student, which
university they attended, their field of study, their major, and
their minor. The CS+ and the CS− profile only overlapped at the
highest level (i.e., both were students). In the generalization test,
subjects were presented with 10 possible players (i.e., CS+, CS+,
and 8 GSs) and had to indicate to what extent they expect that
this specific player would exclude them if they would play a game
of Cyberball. This US-expectancy was rated on a 10-point scale
where 0 indicated this player will not exclude me and 10 indicated
this player will exclude me. The GSs consisted of morphs between
the CS+ and the CS− and decreased in similarity with the CS+
(and increased in similarity with the CS−). This experiment led
to a normative generalization gradient, where strength of US-
expectancy decreases with an increase in dissimilarity between
the GS and the CS+. For didactic reasons, we need an individual
difference variable that can explain the difference in the subject-
specific generalization gradients, we created a variable, u, that

ranges from 0 to 10 and is associated with the subject specific
generalization function.

4.2. Hierarchical Models
We fitted all models in R (RCoreTeam, 2014) by means of the
lme4-package (Bates et al., 2013). We refer to Baayen (2008)
for a general introduction to R (i.e., chapter 1) and for an
extensive treatment of hierarchical data-analysis (i.e., chapter 7).
Throughout this worked example we made use of maximum
likelihood estimation. If the interest lies in a Bayesian approach
Gelman et al. (2014) give a thorough theoretical introduction
of Bayesian hierarchical models. Gelman and Hill (2006) (i.e.,
chapter 16 and 17) give a practical introduction on how to use
BUGS/JAGS within R for the estimation of hierarchical models
in a Bayesian framework.

4.2.1. Hierarchical Linear Model

The simplest, useful hierarchical model that we can fit to this data
is a random intercept model2 with a fixed effect of the stimulus
dimension. The analysis starts with a call to the lmer() function
of the lme4-package:

model1 = lmer(Expectancy ~ 1 + d + (1|ID),
→֒ REML=FALSE, data=df)

This code starts with regressing the Expectancy-scores on the
dimension, d. This part constitutes the fixed part of the model.
The (1|ID) statement allows the intercept to vary over all subjects
and controls for the repeated nature of the data. A “1” in R
always indicates an intercept. The REML statement in the code
controls the optimization procedure for the parameter estimates;
Restricted Maximum Likelihood (REML) as well as Maximum
Likelihood (ML) are provided in the package. By setting the
REML statement to FALSE one chooses for ML estimates. For
small sample sizes (i.e., n < 40) REML is preferred because it
is an unbiased estimator. ML estimates are necessary when you
want to compare two nested models with a different fixed model
statement. REML assumes equivalent fixed effects between two
competing nested models. Although ML is a biased estimator it
behaves asymptotically unbiased in large sample sizes. In sum,
if you have a small sample you need to use REML with the
restriction that you cannot compare competing models with
respect to their fixed effects. If your sample is large enough,
you can use ML and benefit from the added flexibility (Snijders
and Bosker, 2012). To end the model statement you need to
provide a data frame that holds all the variables that are used in
the model (for more information on data frames you can type
?data.frame in R). The output of the model can be produced with
the summary (model1) statement and is summarized in Table 3.

The next model is the random intercept/random slope model
which was formally introduced in Equation (1). The subject-
specific generalization gradients are explicitly modeled by the
added random slope effect. This model is specified as follows:

model2 = lmer(Expectancy ~ 1 + d + (1 + d|ID),
→֒ REML=FALSE, data=df)

Only the random specification is altered in comparison with
Model 1. The part (1 + d|ID) allows the intercept and slope to

2This model will be used as a basis for comparison of more complicated models.
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TABLE 3 | Output of the hierarchical linear models.

Model 1 Model 2 Model 3

Parameter S.E. Parameter S.E. Parameter S.E.

γ00 = Intercept 7.92*** 0.19 7.92*** 0.28 9.79*** 0.52

γ10 = Coefficient of d −0.58*** 0.03 −0.58*** 0.06 −1.02*** 0.12

γ01 = Coefficient of u −0.44*** 0.11

γ11 = Coefficient of d:u 0.10*** 0.02

AIC 2253.26 2110.40 2098.56

BIC 2270.28 2135.92 2132.59

Deviance 2245.3 2098.4 2082.3

Residual df 516 514 512

Number of level-1 observation 520 520 520

Number of level-2 clusters 52 52 52

τ20 = var(U0i ) 0.37 3.33 2.33

τ21 = var(U1i ) 0.18 0.13

σ2
e = Var(ǫij ) 4.12 2.43 2.43

***p < 0.001; d, dimension; u, individual differences variable; U0i, random intercept effect; U1i, random slope effect; ǫij , level-1 residuals.

vary across subjects. To test the significance of random effects
we need to introduce the notion of the Deviance statistic. This
Deviance statistic indicates how well a model fits the data after
controlling for the number of parameters included in the model
(Gelman and Hill, 2006). In HLM this is mainly used to test the
significance of random parameters. The difference in Deviance
between two nested models is used to the test the effect of (an)
added parameter(s). If the added random statement increases
the fit of the model, a drop in Deviance will be observed
that justifies added complexity of the model. This is done by
comparing the random intercept/random slope model with the
random intercept/fixed slope model. This comparison can be
easily executed in R by means of the anova() statement:

anova(model1,model2)

which indicates a drop in Deviance of χ2
(2, 514)

= 146.87,

p < 0.01 after including the random slope effect. Note that
the difference in Deviance is evaluated against two degrees of
freedom, which come from the random slope parameter and the
estimated covariance between the random intercept and random
slope parameter. The Deviance statistic and parameter estimates
of Model 1 and 2 can be found in Table 3. This (significant)
difference indicates that there are individual differences in the
degree of generalization across the stimulus dimension. A third
model will be tested before we give an interpretation of the
results.

This model includes an individual differences variable, ui, that
can account for the variance around the intercept and slope.
Including ui as a main effect allows to explain variance at the
level of the intercept. Including ui in interaction with the stimulus
dimension d allows to explain variance at the level of the slope.
Especially this last parameter is of interest. The R-code:

model3 = lmer(Expectancy ~ 1 + d + u + d:u + (1
→֒ + d|ID), REML=FALSE, data=df)

The output of this model is displayed in Table 3. Significance
of fixed effects are evaluated by means of the Wald-test and are
provided in the lmer output. The Intercept estimate indicates
that the mean US-Expectancy for the CS+ is 9.79, after
controlling for ui. The US-Expectancy for the CS+ decreases
with 0.44 units for every unit increase in u. This means that
high scores in u have a lower US-Expectancy for the CS+.
The main effect of the stimulus dimension, d, indicates that
every unit increase (e.g., going from GS2 to GS3) lowers
the US-Expectancy toward that stimulus with 1.02 units. This
observation corresponds to the definition of a generalization
gradient: Responding to the GSs decrease as the difference with
the original CS increases. The cross-level interaction between the
stimulus dimension, d, and the individual difference variable, u,
indicates that for every unit increase in u a reduction of 0.10
units is observed in the slope. This indicates that subjects who
score higher on the individual difference variable will have a
less steep slope, and hence, are generalizing more across the
stimulus dimension. The reduction in slope variance between
Model 3 and Model 2 is a direct effect of the cross-level
interaction. We can see that 30% (from 0.18 to 0.13) of the slope
variability is explained by including the individual difference
variable.

We plotted the raw data, combined with the predicted data
from the different models to get more insight in what the models
are doing. These plots can be found in Figure 1. So far we

always assumed a linear decrease in response strength. Figure 1A
makes clear that this assumption is not realistic for the raw

data. Clear deviations from this linear pattern can be detected.
Polynomials can easily be introduced in the HLM framework

when there is evidence that the generalization gradients deviate

from linearity. In the next section we will give an example of
how to fit a quadratic function without abandoning the lmer-
function.
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FIGURE 1 | Graphical representation of the raw data and the

predicted data for the fitted models. (A) The raw data plot for all

52 subjects. (B) Subjects specific predictions under the random

intercept model. (C) Subject specific predictions under random intercept,

random slope model. Notice the differences in slope for every subject.

(D) Subject specific predictions from the random intercept, random

slope model with inclusion of individual differences variable, ui . The

shades of blue indicate the scores on ui , the lighter shades generalize

more. (E) Subject specific predictions under the quadratic model. (F)

Predictions under the quadratic model with inclusion of individual

differences variable, ui . The shades of blue indicate the scores on ui ,

lighter shades generalize more.

4.2.2. Polynomial Hierarchical Linear Model

The estimation of a polynomial function is analogous to a first
order linear model. The regression weights in the models are still
linear, only the stimulus dimension is included in a transformed
version. The syntax will be similar to previously fittedmodels.We
will start with extendingModel 2 with a quadratic effect, d2, of the
stimulus dimension. It is important to also include the first order
effect when a quadratic effect is included. This fourth model is
specified as follows:

model4 = lmer(Expectancy ~ 1 + d + I(d^2) + (1
→֒ + d|ID), REML=FALSE, data=df)

In Table 4 you can see that the quadratic effect of the stimulus
dimension significantly contributes to the fit of the model, p <
0.01. Alternatively the Deviance of Model 4 can be compared to
Model 2 to test the quadratic effect. The difference in deviance
is χ2

(1, 513)
= 35.439, p < 0.01. An intermediate conclusion is

that the generalization gradient is better described via a quadratic
effect that allows some curvature over the stimulus dimension.
Figure 1E demonstrates how this quadratic effect changes the fit
of the model. In a next step we add a quadratic random effect.
The fixed effect specification in R is the same as in Model 4, only
the random part is altered:

(1 + d + I(d^2)|ID)

The output from this model can be found in Table 4 under
Model 5. The difference in Deviance between Model 4 and 5 is
not significant, χ2

(3, 510)
= 6.22, p = 0.10. This indicates that a

random quadratic statement of d does not contribute to a better
fitting model than a mere linear random effect.

We included u as a main effect and as a cross-level interaction
with d and d2 to test if this individual difference variable explains
the variability in the intercept and slope. This model is specified
in R via:

model6 = lmer(Expectancy ~ 1+ d + u d:u +
→֒ I(d^2) + I(d^2):u + (1 + d|ID),
→֒ REML=FALSE, data=df)

An inspection of the output in Table 4 learns that the cross-
level interaction between d2 and u is not significant (and
also has no substantive contribution with parameters estimates
around 0). Omitting this interaction leads to the final model.
This model can be found under Model 7 in Table 4. As a
substantive conclusion we can summaries that the generalization
gradient is best described with a quadratic effect of the stimulus
dimension. Second, the individual differences variable explains
linear subject-specific deviations of this generalization gradient.
In other words, the individual differences variable can predict
the degree of generalization: High scores on the individual
differences variable will have a more flattened generalization
gradient.

Polynomials offer an elegant solution for fitting non-linear
relationships within a linear framework. This example indicates
that it can offer an interesting extension. However, polynomials
come with some disadvantages. First, the interpretation of
the model becomes more difficult because the first order
and polynomial variable are highly correlated. Second, the
interpretation of the polynomial takes place on a different scale:
A one-unit increase needs to be interpreted on a non-linear scale.
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TABLE 4 | Output for the polynomial hierarchical linear models.

Model 4 Model 5 Model 6 Model 7

Parameter S.E. Parameter S.E. Parameter S.E. Parameter S.E.

γ00 = Intercept 7.26*** 0.30 7.26*** 0.32 8.64*** 0.60 8.69*** 0.57

γ10 = Coefficient of d −0.09 0.10 −0.09 0.12 −0.47* 0.21 −0.51*** 0.14

γ20 = Coefficient of d2 −0.05*** 0.01 −0.05*** 0.01 −0.06** 0.02 −0.05*** 0.01

γ01 = Coefficient of u −0.28** 0.11 −0.29** 0.10

γ11 = Coefficient of d:u 0.08* 0.04 0.09*** 0.02

γ21 = Coefficient of u:d2 0.00 0.00

AIC 2076.96 2076.73 2066.84 2064.90

BIC 2106.73 2119.27 2109.37 2103.18

Deviance 2063.0 2056.7 2046.8 2046.9

Residual df 513 510 510 511

Number of level-1 observation 520 520 520 520

Number of level-2 clusters 52 52 52 52

τ20 = var(U0i ) 3.40 3.90 2.82 2.82

τ21 = var(U1i ) 0.19 0.41 0.14 0.14

τ22 = var(U2i ) 0.00

σ2
e = Var(ǫij ) 2.24 2.07 2.24 2.24

***p < 0.001, **p < 0.01, *p < 0.05; d, dimension; u, individual differences variable; U0i, random intercept effect; U1i, random slope effect of dimension; U2i, random slope effect of

quadratic dimension; ǫij , level-1 residuals.

Third, one can easily over-fit the data when making use of higher
order polynomials.

4.3. Comparison with Repeated Measures
ANOVA
In this section we will analyze the data by means of rANOVA
and compare the results with those obtained from the HLMs. In
the current literature on generalization a continuous individual
difference variable is dichotomized to fit into a rANOVA.
Accordingly we will perform a median split on the individual
difference variable u. This median split is given by:

Groupi =

{

low ui < median(u)
high ui ≥ median(u)

(7)

Where Groupi refers to the group membership of subject i. This
factor can take two levels: low when the value for u for subject i
lies below the median for u, highwhen the value for u for subject i
is equal to, or higher than the median for u. In a rANOVAmodel
we included Group as a between-subject variable and Stimulus
Type (CS+, CS−, and the GSs) as a within subject variable.
Additionally, and of primary interest, the interaction between
Group and Stimulus Type was included. Mauchly’s test flagged
that the assumption of sphericity was violated, W = 0.0003, p <
0.01. Therefore, we will report Greenhouse-Geisser (ε̂ = 0.36)
corrected tests. The results showed that there was no main effect
of Group, F(1, 50) = 0.80, p= 0.38, but there was a main effect of
Stimulus Type, F(3.28, 164.23) = 48.92, p < 0.01. The interaction
effect between Group and Stimulus Type was also significant,
F(3.28, 164.23) = 6.32 , p < 0.01. These results indicate that there
is no difference in the overall US-Expectancy between the low

and the high Group, but that different stimuli elicit a different
mean US-expectancy. The interaction indicated that there are
differences between the low and the high Group in the strength
of response toward the different stimuli. This is exactly what
was found with the HLM: There are differences in how subjects
respond toward the different stimuli and (a dichotomized version
of) u is meaningful in explaining these differences.

However, when we change the median split into:

Groupi =

{

low ui ≤ median(u)
high ui > median(u)

(8)

the results of the rANOVA change drastically. Again Groupi
refers to the group membership of subject i. This factor can
take two levels: low when the value for u for subject i lies
below or is equal to the median for u, high when the value
for u for subject i is higher than the median for u. The same
sphericity violation holds, we will again report Greenhouse-
Geisser corrected tests. The results indicated no main effect of
Group, F(1, 50) = 1.66, p = 0.20 and a significant main effect
of Stimulus Type, F(3.28, 164.23) = 42.92, p < 0.01. However, the
most important differences with the first rANOVA model lies in
the absence of a significant interaction effect between Group and
Stimulus type, F(3.28, 164.23) = 1.402782, p = 0.24. This latter
effect indicates that there are no differences between the two
Groups in the strength of their responding toward the different
stimuli. This is the opposite of what we found with the HLM.

These analyses make three points clear with respect to the
use of rANOVA for generalization data. First, the sphericity
violation is quite severe. In studies where there are 10 repeated
measurements the lower limit of ε̂ is 1/(10 − 1) = 0.11.
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The calculated value of ε̂ in our study is 0.36 which is closer
to the lower limit than toward the upper limit of 1. This
means that quite severe corrections are in order to make correct
inferences. Second, from the rANOVA output it is not possible to
interpret the directions of the found effects (i.e., Which Group
has a stronger overall US-expectancy? Which stimuli elicit the
differences between groups?). Additional contrast analyses, and
additional corrections from multiple testing, are in order to
reach a level of interpretation that is necessary in generalization
research. Third, the two performed rANOVAs indicated that
a rather trivial change in the way in which a variable is
dichotomized could alter the conclusions of the study drastically.
This again indicates how problematic the dichotomization of a
continuous independent variable.

5. Conclusion

In this paper we demonstrated that hierarchical models are
superior for the analysis of generalization gradients. First, this
superiority is mainly due to the possibility of using continuous
independent variables in the model. Second, HLMs have fewer
assumptions compared to rANOVA. Other than meeting the
sphericity assumption it is essential for rANOVA to have
complete data (i.e., complete case analysis). We tried to make a
convincing case based on theoretical arguments and provided a

simulation that demonstrated the true power of the hierarchical
framework. In the last part of the paper a worked example
was provided. In this tutorial a simple (i.e., linear) and more
advanced (i.e., quadratic) models were introduced. This tutorial
provided the appropriate R-code in order to apply HLM to new
experimental data. We hope that this paper reaches it goal and
can persuade all generalization researchers to use hierarchical
models for the analysis of their data.
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