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Abstract
Task preparation has traditionally been thought to rely upon persistent representations of instructions that permit their
execution after delays. Accumulating evidence suggests, however, that accurate retention of task knowledge can be insufficient
for successful performance. Here, we hypothesized that instructed facts would be organized into a task set; a temporary coding
scheme that proactively tunes sensorimotor pathways according to instructions to enable highly efficient “reflex-like”
performance. We devised a paradigm requiring either implementation or memorization of novel stimulus–response mapping
instructions, and used multivoxel pattern analysis of neuroimaging data to compare neural coding of instructions during the
pretarget phase. Although participants could retain instructions under both demands, we observed striking differences in their
representation. To-be-memorized instructions could only be decoded from mid-occipital and posterior parietal cortices,
consistent with previouswork on visual short-termmemory storage. In contrast, to-be-implemented instructions could also be
decoded from frontoparietal “multiple-demand” regions, and dedicated visual areas, implicated in processing instructed
stimuli. Neural specificity in the latter moreover correlated with performance speed only when instructions were prepared,
likely reflecting the preconfiguration of instructed decision circuits. Together, these data illuminate how the brain proactively
optimizes performance, and help dissociate neural mechanisms supporting task control and short-term memory storage.

Key words: cognitive control, frontoparietal cortex, MVPA, task preparation, visual cortex, working memory

Introduction
A distinctive aspect of adaptive human cognition concerns the
ability to rapidly transform symbolic instructions into novel
goal-directed behaviors (Duncan et al. 1996, 2008; Cole, Laurent,
et al. 2013). Whether you are visiting a foreign city for the first
time, building a piece of furniture, or learning how to use a new
application on your computer, your first steps will likely be
guided by instructions that specify how to act in order to achieve
a given goal. Yet, although learning from instruction is ubiqui-
tous in daily life and unique in its efficiency, little is known
about the precise mechanisms that give rise to this capacity
(Wenke and Frensch 2005; Wenke et al. 2007; Meiran et al. 2014).

Extant evidence suggests that the lateral prefrontal cortex
(LPFC) is critically involved in such flexible control of novel beha-
viors. Lesions of the LPFC can perturb the ability to learn novel
tasks while leaving pre-learned behaviors unaffected (Luria
1966; Walsh 1978; Fuster 1980; Petrides 1985; Duncan 1986;
Duncan et al. 1997). Likewise, in functional magnetic resonance
imaging (fMRI) studies the LPFC becomes active when novel
task instructions are given, but rapidly disengages after only
few applications (e.g., Ruge and Wolfensteller 2010; Dumontheil
et al. 2011; Hartstra et al. 2011). In linewith popular “dual system”

views, these findings suggest that LPFC is involved in the initial
construction of task representations for the first controlled
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applications, followed by the gradual buildup of more pragmatic
representations in premotor-basal-ganglia loops that establish
behavioral routines (Ramamoorthy and Verguts 2012; Wolfen-
steller and Ruge 2012). However, despite this well-documented
general importance of the LPFC in the assembly of novel task re-
presentations, the precise nature of its contribution remains
controversial.

Classic accounts of LPFC function have emphasized the role of
persistent neuronal firing in the activemaintenance of task-rele-
vant information (Fuster 2001; Miller and Cohen 2001). Unlike
sensory brain areas that typically exhibit transient bursts of
activity time-locked to the instruction cue, the LPFC can remain
active throughout the entire delay separating the cue from a con-
tingent target stimulus (Fuster and Alexander 1971; Kubota and
Niki 1971; Fuster 1973; Cohen et al. 1997; Courtney et al. 1997).
Such sustained activity is often specific to a particular type of
task-relevant information such as stimuli, locations, rewards,
and even abstract task rules (Watanabe 1996; Asaad et al. 1998;
Rainer et al. 1998; Wallis et al. 2001). Accordingly, the LPFC has
been thought to actively maintain a stable representation of the
task cue, thereby making it accessible for later selection of task-
appropriate behavior when it is no longer available in the envir-
onment (Miller et al. 1996; Miller and Cohen 2001).

Several lines of evidence, however, suggest a more complex
picture. A recent neurophysiological study has revealed that con-
text-dependent activity patterns in LPFC neurons evolve dynam-
ically within the delay phase and are virtually orthogonal to the
initial representation of the task cue (Stokes et al. 2013). In paral-
lel, behavioral studies in humans have shown that accurate
retention of task knowledge can be insufficient for behavioral
control during performance. As noted above, frontal lobe patients
often have difficulties in obeying novel task instructions. Strik-
ingly, however, the very same patients can often properly recall
the demands of a task, despite their inability to perform it (Milner
1963; Konow and Pibram 1970; Duncan et al. 1996). Such cases of
“goal neglect” have also been documented in the normal popula-
tion (Duncan et al. 1996, 2008, 2012; Dumontheil et al. 2011;
Bhandari and Duncan 2014). Further studies have shown that
active preparation, but notmemorization, of task instructions cre-
ates vulnerability to response primingwhen the instructed stimuli
are encountered in a nested secondary task (Cohen-Kdoshay and
Meiran 2009; Liefooghe et al. 2012, 2013; Meiran et al. 2012, 2014).
In conjunction, these findings indicate that task readiness consti-
tutes a specific cognitive state that is distinct from themeremain-
tenance of instructed task demands.

In the present study,wewanted to compare the neural under-
pinnings of these 2 states. Based on the aforementioned findings,
we hypothesized that preparation would elicit the formation of a
task set in the sense of a “prepared reflex,” that is, a temporary
configuration that tunes sensorimotor systems toward goal-
dependent processing of anticipated input. Such a configuration
may proactively optimize performance by binding perceptual
and motor codes into a compound representation, so that en-
countering the instructed stimulus will automatically trigger
the associated response. In contrast, memorization of task
instructions may be achieved by more persistent activation of
an initial semantic instruction representation. To address this
question, we designed a paradigm that required participants
either to implement newly instructed stimulus–response (SR)
mappings or to memorize them for a later recognition test. An
initial behavioral study confirmed that only prepared, yet not
memorized, stimuli are capable of priming the associated
responses in a secondary task (see Supplementarymaterial). Sub-
sequently, we used multivoxel pattern analysis (MVPA) of fMRI

data to reveal the neural representation of to-be-implemented
and to-be-memorized instructions in the human brain. MVPA as-
sesses the neural coding of particular task parameters by identify-
ing fine-grained local activity patterns that permit their
discrimination (Haynes and Rees 2006; Norman et al. 2006). This
methodology has been successfully applied in studying the neural
representation of both task rules (Bode and Haynes 2009) and
working memory contents (Serences et al. 2009), and in revealing
changes in the coding strength of such variables as a function of
the task context (Woolgar, Hampshire, et al. 2011; Waskom et al.
2014, 2016). Here,we usedMVPA to compare the neural basis of se-
mantic task knowledge and behaviorally effective task sets.

Materials and Methods
Participants

Twenty-seven right-handed and neurologically healthy subjects
(11 female) participated in the fMRI experiment. One participant
was removed from analysis due to excessive headmotion during
the scanning, exceeding voxel size. Furthermore, 3 participants
had to terminate the experiment prematurely, as they were un-
able to perform the tasks above chance level. Thus, the final sam-
ple contained 23 participants (10 female; mean age = 24.09;
SD = 5.06). Approval for the study was obtained from the local
ethics committee, and all participants gave written informed
consent prior to participation.

Experimental Rationale

Our experimental task was motivated by recent behavioral stud-
ies that have combined a primary SRmapping task with a nested
secondary task (see Supplementary material). These studies
have demonstrated that the instructed SR mapping modulates
performance in the secondary task (i.e., target stimuli prime
their associated responses), but only when it is actively prepared
and not when it is memorized for recognition or recall (Liefooghe
et al. 2012, 2013). Here, instead of employing a secondary task, we
sought to measure brain activity during the pretarget phase
(i.e., the delay between task instruction and execution) to probe
the differential nature of the cognitive states that are established
under preparation andmemorization demands. Previous studies
comparing task preparation with short-term memory storage
have used univariate analysis techniques and observed very
similar brain activity under both types of demand, especially
within the LPFC (e.g., Ikkai and Curtis, 2011; Hartstra et al.
2011). However, an equivalent increase in the average signal in-
tensity of this regionmainly indicates a comparable engagement
of cognitive control, while leaving it open whether or not the
underlying functional states are similar. In the present study,
we therefore utilized MVPA as a means to quantify the neural
coding of instruction information during the pretarget phase.
This permitted us to compare the strength of representations
between implementation and memorization conditions, to
establish links between such coding properties and subsequent
performance, and to compare the similarity and stability of the
neural code in which task instructions are represented through-
out the pretarget phase.

To be able to measure the coding of instruction information
via classification analyses, we included 2 types of SRmapping in-
structions that involved different types of stimuli, namely faces
and houses. The rationale for this procedure was twofold: First,
by presenting novel items on each trial, this procedure permitted
us to avoid repetitions of SR mappings, while using 2 constant
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and separable categories of instructions. Ensuring instruction
novelty was critical, as previous studies have shown that the
neuralmechanisms supporting task control change substantially
with only few repetitions (Cole et al. 2010; Ruge andWolfensteller
2010; 2013; Hartstra et al. 2011; Stocco et al. 2012). Second, the use
of distinct stimulus categories was also intended to provide the
classificationwith a strong signal that would allow us tomeasure
a modulatory effect of pretarget demands on instruction coding.

Apparatus and Stimulus Material

MR images were acquired using a 3T Trio MR scanner (Siemens
Medical Systems, Erlangen, Germany) with a standard 32-chan-
nel radio-frequency head coil. Stimulus presentation was con-
trolled via Presentation software (Neurobehavioral Systems Inc.,
Albany, CA), and the stimulus displays were projected on a
screen, located at a distance of approximately 120 cm (frame rate
= 60 Hz). All stimuli were presented on a gray background (RGB =
100, 100, 100). The stimulus material comprised images of faces
and houses as well as text captions. A total of 252 face images
and 252 house images were collected by accessing publicly avail-
able databases and by downloading further images form the
Internet. These images were converted to gray scale and dis-
played at a scale of 150 × 200 pixels (equivalent to 3.77 × 5.03° vis-
ual angle). Text captions were displayed in white font (font
type = Arial, font size = 22, equivalent to 4.49 × 0.65°).

Task Design

Our task was comprised of 2 different block types that required
implementation and memorization of SR mapping instructions
respectively. In implementation blocks, trials began with the
presentation of an instruction screen in which either 2 faces or
2 houses were presented along with the letters “+ WIJS” and
“+ MIDDEL” (Dutch for “+ index” and “+ middle”; see Fig. 1A for
an illustration). This procedure mapped one of the images to
the bimanual index fingers, and the other image to the bimanual
middle fingers. The position of each set of fingers on the instruc-
tions screen (i.e., upper vs. lower half ) was counterbalanced
across trials. Instruction screens were presented for a total of
2000 ms. Pilot studies had revealed that this duration is neces-
sary to ensure effective stimulus encoding. Moreover, we opted
for bimanual rather than lateralized responses because we
wanted to avoid participants employing imagery strategies
wherein they imagine one image on the left side and another
on the right side (see Hartstra et al. 2011 for similar reasoning).
The instruction phase was followed by a delay interval, during
which a fixation point (diameter = 0.24°; color =white) was pre-
sented centrally on the screen. The duration of the delay was
jittered to permit separation of delay-related brain activity from
the preceding instruction phase and from the subsequent target
phase. Durations were varied between 800 and 5200 ms in steps
of 400 ms following a distribution of pseudologarithmic density
(mean duration = 2467 ms). Afterward, in the target phase, one

Figure 1. The upper panel illustrates the single-trial structure in implementation blocks (A) and memorization blocks (B). The lower panel illustrates the possible target

configurations in implementation blocks (C) and memorization blocks (D).
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of the 2 instructed images was presented centrally for 3000 ms
requiring the response dictated by the preceding instruction.
Occasionally, the target image was a novel image from the
same stimulus category that was not presented on the preceding
instruction screen (see Fig. 1C). These “catch trials” required re-
sponse omissions and were included to encourage participants
to encode both SRmappings and not only one of them. The target
phase was followed by an intertrial interval (ITI) of variable
length in which a blank screen was presented. The length of
the ITI was jittered randomly, based on the same distribution
as the delay phase.

Trials in memorization blocks followed the same structure
(see Fig. 1B). The only difference was the design of the target
phase. Here, a second instruction screen was presented (probe
screen) and participants were required to indicate whether or
not it conveyed the same SR mapping as the initial instruction
screen. Probe screens were designed in the same manner as the
instruction screen, except that the letters defining the response
set were accompanied by a “=” sign rather than by a “+” sign.
This change was implemented to ensure that participants
could always distinguish instruction screens from probe screens.
Half of the probe screens displayed the same SR mapping as the
instruction screen (matches), and the other half displayed the re-
versed mapping (mismatches). Furthermore, we also varied the
item position on the probe screen, independently of the probe
validity. That is, the position of the 2 images (top vs. bottom)
on the probe screen could be either the same, compared with
the instruction screen, or reversed. In both cases, the probe
could be either a match or a mismatch (see Fig. 1D for an illustra-
tion). We included this manipulation of the item position to en
sure that participants relied on the information conveyed by
the SR mapping instruction rather than on a mere visual image
thereof (i.e., participants couldmaintain a visual image of the in-
struction screen and any deviance from this template on the
probe screen would be taken as evidence for a mismatch).
Matches and mismatches were indicated with bimanual index
fingers andmiddle fingers (mapping counterbalanced across par-
ticipants). Moreover, as in implementation blocks, catch trials
were included. In these trials, one of the 2 items on the probe
screen was replaced by a novel uninstructed image, requiring re-
sponse omissions. In half of these trials the upper imageswas re-
placed, and in the other half the lower image.

Overall, participants performed five runs of each block type.
Each run contained 22 regular trials and 2 catch trials. For both
regular trials and catch trials, half of the instructions displayed
faces and the other half houses. Images were randomly drawn
from the whole set of images and combined into a unique set
of instructions for each participant. Every image was presented
only once throughout the entire experiment. The only con-
straints were that face instructions always displayed 2 images
from the same gender, and that distractors on catch trials were
taken from the same gender as the 2 instructed images. Based
on pilot studies, we included this constraint to match face in-
structions and house instructions in terms of accuracy and reac-
tion time (RT). Moreover, it should prevent participants from
encoding face itemsmerely by virtue of their gender. Trial transi-
tions were random with the constraints that repetitions and al-
ternations of the instruction category occurred equally often in
each run, and that all relevant trial elements—that is, probe val-
idity (match vs. mismatch), target position on the instruction
screen (top vs. bottom), distractor position on the probe screen
(top vs. bottom)—were not repeated more than 2 times. Finally,
based onpilot studies, we suspected that frequent alternation be-
tween implementation and memorization demands might

introduce transfer effects, for example, by encouraging partici-
pants to utilize one general strategy. Therefore, participants
first completed five runs of one block type and then five runs of
the other (sequence counterbalanced across participants).

Functional Localizer

After completing the experimental runs, participants performed
a localizer task designed to identify functionally dedicated visual
brain regions that preferentially process face and house stimuli.
This task comprised 3 types of mini-blocks, in which a series of
16 imageswere rapidly presented (duration = 800 ms; interstimu-
lus interval = 200 ms). Images were either faces, or houses, or
scrambled images (i.e., random permutations of pixels from
both image sets). Participants were required to attend to the
image stream and to indicate stimulus repetitions via a button
press, which occurred 2 times in each mini-block. The localizer
task consisted of four runs, each of which contained all 3 differ-
ent mini-blocks (sequence counterbalanced across participants).
Within runs,mini-blocks were separated by 16-s fixation periods.

Scanning Procedure

After participantswere placed headfirst and supine in the scanner
bore, a high-resolution anatomical imagewas acquired using a T1-
weighted 3D MPRAGE sequence (time repetition [TR] = 1550 ms,
time echo [TE] = 2.39 ms, time to inversion = 900 ms, acquisition
matrix = 256 × 256 × 176, sagittal field of view (FOV) = 220 mm, flip
angle = 9°, voxel size resized to 1 × 1 × 1 mm). Functional images
during the experimental tasks and the localizer taskswere acquired
using a T2*-weighted echo planar imaging (EPI) sequence, sensitive
to BOLD contrast (TR = 2000ms, TE = 35 ms, image matrix = 64 × 64,
FOV = 224 mm, flip angle = 80°, slice thickness = 3 mm, distance
factor = 17%, voxel size resized to 3.5 × 3.5 × 3.5 mm3, 30 axial slices).
Overall the scanning time lasted about 60 min per subject.

Behavioral Data Analysis

RT and accuracy of regular trials were analyzed bymeans of gen-
eral linear models (GLMs) with the factors BLOCK TYPE (imple-
mentation vs. memorization) and INSTRUCTION CATEGORY
(face vs. house; see Supplementary Material for an additional
analysis using linear mixed effects models). In memorization
blocks, performance was averaged across match and mismatch
trials. Error trials and trials subsequent to those were discarded
from the RT analysis. Moreover, the accuracy of catch trials was
analyzed in a separate GLM of analogous design. We also com-
puted inverse efficiency scores (IES) by dividing each partici-
pant’s mean RT of a design cell by the percentage of accurate
responses (see Townsend and Asby 1983). This score serves the
integration of speed and accuracy into a single index, and was
used in some analyses to rule out the possibility of speed-accur-
acy trade-offs.

fMRI Data Analysis

Data preprocessing was performed using SPM 8 software
(Wellcome Department of Cognitive Neurology, London, UK)
and data visualization was performed using caret software (Van
Essen 2005). The first four volumes of each run were excluded to
allow for T1 relaxation. The remaining volumes were realigned to
their mean image and corrected for differences in slice-time ac-
quisition. Each participant’s anatomical image was coregistered
with themean functional image, and normalized to the template
brain provided by the Montreal Neurological Institute (MNI).

4 | Cerebral Cortex

 at B
iom

edical L
ibrary G

ent on M
ay 3, 2016

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhw032/-/DC1
http://cercor.oxfordjournals.org/


Transformational parameters of the anatomical images were
then applied to the EPI images, and motion parameters were es-
timated, separately for each run. The time series data at each
voxel were processed using a high-pass filter with a cut-off of
128 s to remove low-frequency artifacts. For univariate analyses,
data were smoothed using an 8 mm full-width half-maximum
(FWHM) Gaussian kernel. Multivariate decoding analyses were
performed on normalized but unsmoothed data.

Statistical analyses of the experimental task were performed
separately for implementation and memorization blocks. Time
series dataweremodeled based on a series of events. We defined
six vectors based on the different trial phases (i.e., instruction
phase, delay, and target phase), and instruction categories (i.e.,
face instructions and house instructions). An additional vector
of no-interest was defined that contained all trial phases of
error trials, and the target phases of catch trials. The durations
of all events (from start to finish) were convolved with a haemo-
dynamic response function and entered into the regression
model,which contained additional regressors to account for vari-
ance related to head motion. For univariate analyses, the model
included another regressor for the ITI, which was used as a low-
level baseline for preparation-related brain activity. The localizer
taskwasmodeledwith separate regressors for the different types
of mini-blocks (i.e., faces, houses, scrambled images, and fix-
ation), and regressors to account for head motion. In all models,
statistical parameter estimates were computed separately for all
columns in the design matrix.

Definition of Regions of interest

Prior to performing whole-brain analyses, we selected a number
of candidate regions that we expected to be involved in the as-
sembly of novel task representations. As noted above, previous
studies have primarily emphasized the importance of the LPFC,
though the exact location of foci has varied across investigations
and may depend upon the type of instruction that is given. Spe-
cifically, processing of instructions that convey specific SR map-
pings has typically been associated with caudal LPFC sections in
the vicinity of the inferior frontal junction area (IFJ; Ruge and
Wolfensteller 2010, 2013; Hartstra et al. 2011), whereas more ab-
stract and/or complex task instructions might be processed in
more rostral sections along the inferior frontal sulcus (IFS; Cole
et al. 2010; Cole, Laurent, et al. 2013). Beyond the LPFC, novel
instructions typically also yield activity in the parietal lobe in
and around the intraparietal sulcus (IPS; Ruge and Wolfensteller

2010; Dumontheil; et al. 2011; Stocco et al. 2012). Coactivation of
LPFC and IPS has been documented across a variety of paradigms
that require flexible instantiation, updating, or reinforcement of
task parameters (Cole and Schneider 2007; Duncan 2010; Cole,
Reynolds, et al. 2013). Accordingly, these regions are likely candi-
dates for the construction of task sets based on instruction. We
defined 3 sets of bilateral ROIs covering the IFJ, the IFS, and the
IPS (see Fig. 2A for an illustration). Spherical ROIs pertaining to
the IFJ were centered at the peak coordinates of a meta-analysis
on frontal lobe contributions to task control (Derrfuss et al. 2005;
radius = 10 mm; size = 515 voxels; left IFJ: −40, 4, 30; right IFJ: 44,
10, 34). Regions of interest (ROIs) pertaining to the IFS and the
IPSwere based on a study by Fedorenko et al. (2013; IFS: size = 2666
voxels; center of gravity: ±38, 39; 23; IPS: size = 8520 voxels; center
of gravity = ±29; −56; 46). In this study, an average statistical t-map
was computed across 6 different types of cognitive demand (spa-
tial workingmemory, verbal workingmemory, arithmetic, 2 types
of multi-source interference, Stroop interference) that were all re-
vealed by contrastingadifficult task conditionwith aneasier base-
line condition. The full unthresholded map and the parcellation
into its components is available for download at http://imaging.
mrc-cbu.cam.ac.uk/imaging/MDsystem.

In addition to frontoparietal regions, we were also interested
in the representation of instruction information within function-
ally dedicated visual regions. Specifically, the fusiform face area
(FFA) and the parahippocampal place area (PPA) have been docu-
mented as relatively specialized processors of faces and scenes
(including houses), respectively (Kanwisher et al. 1997; Epstein
and Kanwisher 1998; Epstein et al. 1999; Kanwisher and Yovel
2006). Recent MVPA studies from the working memory literature
moreover indicate that such feature- or category-selective regions
may contain “high-fidelity” representations of visual memoranda
during delay intervals (Sreenivasan, Curtis, et al. 2014). Such repre-
sentations appear to reflect the sensory features of memoranda
(Harrison and Tong 2009; Lee et al. 2013; Sreenivasan, Vytlacil,
et al. 2014), persist throughout the delay even if average activity
returns to baseline (Serences et al. 2009), and are tied with the pre-
cision ofWMperformance (Emrich et al. 2013; Ester et al. 2013). We
therefore assumed that, in our task, pattern separation in the FFA
and the PPA during the delay would index the precision or vivid-
ness of target representation. Spherical ROIs (radius = 10 mm, size
= 515 voxels) pertaining to these regions were centered at the peak
coordinates resulting from the localizer task (left FFA: −42, −55,
−20; right FFA: 42, −49, −14; left PPA: −27, −43, −8; right PPA: 30,
−58, −8; see Fig. 2B). To reveal category-selective regions, activity

Figure 2. Illustration of the ROI within frontoparietal cortex (A) and functionally defined dedicated visual areas (B).
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during face blocks and house blocks was separately contrasted
with fixation at the first level. Thereafter, at the second-level, fix-
ation-corrected activity from both block types were contrasted
with each other (P < 0.001, uncorrected for multiple comparisons).

Multivariate fMRI Analyses

Multivariate decoding analyses were performed with the PyMV-
PA toolbox (Hanke et al. 2009). We employed a searchlight ana-
lysis to reveal local activity patterns that carry information
about the instruction category (Kriegeskorte; et al. 2006) using a
spherical searchlight with a radius of 3 mm. Normalized but un-
smoothed β images were subjected to the analysis and a linear
support vector machine (SVM; cost parameter C = 1) was used
for classification. Our aimwas to reveal the neural representation
of instruction categories during the pretarget phase. To this end,
we trained the SVM to distinguish between face instructions and
house instructions within each block type. These analyses were
performed separately for the β images pertaining to the instruc-
tion phase and for those images pertaining to the delay. In each
analysis, we used a leave-one-run-out cross-validation proced-
ure. That is, the classifier was trained on the data of four runs
and subsequently tested on its accuracy at classifying the data
of the remaining run. This process was repeated five times
using all possible combinations of training and test data. Classi-
fication accuracies were averaged across all five iterations, yield-
ing a mean decoding accuracy map for each participant. Prior to
the second-level analyses, decoding maps were smoothed with
an 8 mm FWHM kernel.

MVPAWithin ROIs

We first extracted decoding accuracieswithin voxels of the prede-
fined ROIs for each design cell. These scoreswere averaged across
left and right hemisphere and analyzed in a GLMwith the factors
TRIAL PHASE (instruction phase vs. delay), BLOCK TYPE (imple-
mentation vs. memorization), and ROI (IFJ vs. IFS vs. IPS vs. FFA
vs. PPA). We assumed that initial processing stages would be
largely similar under implementation and memorization de-
mands, and that differences in instruction coding should be
strongest toward the end of the pretarget phase. Specifically,
we reasoned that the instruction phase primarily reflects the per-
ceptual analysis of the instruction screen and encoding pro-
cesses, so we did not expect substantial differences between
block types during this trial phase (though it is conceivable that
encoding may already differ between block types). The delay,
on the other hand, should capture the distinct states of task
readiness and maintenance, and thus differentiate most clearly
between block types. Given the absence of visual stimulation in
the delay, decoding results from this trial phase should also
yield a more precise index of internal task representation than
the preceding instruction phase, which includes perceptual dif-
ferences between face and house stimuli.

Whole-brain Decoding Analysis

We also explored instruction coding outside of the ROIs by con-
trasting the respective whole-brain decoding maps. Again, ana-
lyses were conducted separately for the instruction phase and
for the delay. First, the decodingmap of each block typewas con-
trasted with chance level of accuracy (50%) to reveal significant
coding of instruction category in implementation andmemoriza-
tion blocks. Thereafter, the 2 maps were contrasted with one
another via paired-samples t-tests to reveal differences in the
coding strength between the 2 block types. For these analyses,

we used a peak threshold of P < 0.001 (uncorrected for multiple
comparisons) in combination with a cluster threshold of 22 con-
tiguous voxels.

Univariate fMRI Analyses

To identify further candidate regions for the decoding analyses
that may also contribute to preparatory adjustments, but are
not detected in the rather conservative whole-brain searchlight
analysis, we contrasted pre-target brain activity with activity
during the ITI. This was done separately for the instruction
phase and for the delay. Significance of these comparisons was
established using a family-wise error corrected cluster threshold
of P < 0.01, and a minimum cluster extent of 100 contiguous
voxels. Note that the ITI should be considered a “low-level
baseline,” as participants were not engaging in task performance
during this trial phase. Accordingly, contrasting pretarget activity
against the ITI provides a sensitive but not a specific index of pre-
paratory control processes.

Internal Validation

An important complication in the interpretation of decoding ac-
curacy is that this measure only considers the discriminability of
experimental conditions and is agnostic toward the source and
directionality of these differences (see Todd et al. 2013 for exten-
sive discussion). This renders decoding data more vulnerable to
confounds than univariate analyses, because such factors may
contaminate a classifier’s discrimination success even if they
are unsystematic in their directionality across individuals and
cancel each other out at the group level. In the context of task
rule decoding in frontoparietal cortex, themost salient confound
is difficulty. Frontoparietal regions are sensitive to task difficulty
across a variety of cognitive domains (Fedorenko et al. 2012,
2013). Hence, successful decoding of task variables within these
regions, in the presence of difficulty confounds, may reflect dif-
ferential amounts of effort or attention to the task, rather than
genuine neural coding of the respective task variable. To examine
whether and to what extent the decoding of instruction categor-
ies might reflect differential task difficulty, we employed 2 types
of validation analyses. First, within each participant, we com-
pared RT between face and house instructions using one-way
analysis of variances (ANOVAs). This analysis should identify
participants who displayed different performance for face in-
structions and house instructions. Second, across participants,
we correlated performance differences between face instructions
and house instructions (recoded as absolute values) and the de-
coding accuracies within frontoparietal ROIs. This analysis
should reveal if better pattern separation in these regions relies
on differential performance between instruction categories.
Note, however, that our study examined brain activity prior to
task execution. Accordingly, these validation analyses are con-
cerned with the role of “anticipated” task difficulty rather than
actual performance demands. This is also why we chose not to
include RT as an additional factor in our regression model (see
Waskom et al. 2014; Woolgar et al. 2014), as it is unclear to what
extent preparatory BOLD signal translates into RT on a trial-by-
trial basis.

External Validation

In the next set of analyses, we sought to probe the relevance of the
decoding results for taskperformance, and to further delineate the
contributions of the different ROIs in establishing task readiness.

6 | Cerebral Cortex

 at B
iom

edical L
ibrary G

ent on M
ay 3, 2016

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/


To reiterate, we expected that active preparation would promote
direct associations between sensory representations of the
instructed targets and motor representations of the linked re-
sponses, to enable efficient task execution. In memorization
blocks, less binding should occur, as the SR mapping information
was merely maintained for comparison with the probe screen.
Further assuming that delay-related decoding accuracy in the
FFA and the PPA indexes the fidelity of target representation (see
above), we reasoned that pattern separation in these regions
might be associated with the speed of performance, especially in
implementation blocks. Such a link could be considered a neural
signature of a “prepared reflex” and mirror response-priming
effects observed in behavioral studies. To test this assumption,
we calculated partial correlations across participants. Specifically,
we correlated delay-related decoding accuracies in visual areas
(averaged across FFA and PPA) with RT (averaged across face in-
structions and house instructions), while controlling for variance
related to decoding accuracies in the same visual areas during
the instruction phase. The latter was done to eliminate potential
perception-related signal bleed from the instruction phase.

Pattern Similarity Analysis

We conducted a final set of analyses to further specify the differ-
ential nature of delay activity between the 2 block types. Specific-
ally, wewanted to adjudicate between 2 alternative explanations
of enhanced instruction coding in frontoparietal areas in imple-
mentation blocks. One possibility,mentioned above, is that prep-
aration promotes a change in the way that instructions are
internally represented via binding of perceptual codes and
motor codes into a compound action plan (transformation hy-
pothesis). Alternatively, however, enhanced instruction coding
could also reflect the mere amplification of a common represen-
tational template, for example, via enhanced focus (amplification
hypothesis). To pit these 2 hypotheses against each other, we
analyzed the similarity of activation patterns within frontoparie-
tal regions between the different trial phases (instruction phase
vs. delay) and block types (implementation vs. memorization)
with the following rationale: Under the transformation hypoth-
esis, onewould predict pattern stability (i.e., the similarity of pat-
terns from the instruction phase and the delay of the same block
type) to be lower in implementation blocks than inmemorization
blocks, reflecting the putative conversion of semantic facts into
task sets. In addition, cross-conditional similarities (i.e., the simi-
larity between instruction-related patterns of one block type and
delay-related patterns of the other block type) should be asym-
metric with greater similarity between delay-related patterns
from memorization blocks and instruction-related patterns
from implementation blocks than vice versa (reflecting greater
persistence of an initially shared representation inmemorization
blocks). In contrast, the amplification hypothesis would predict
the opposite pattern of results with greater pattern stability in
implementation blocks and greater cross-conditional similarity
between delay-related patterns of implementation blocks and
instruction-related patterns of memorization blocks than vice
versa (reflecting the greater perpetuation of a common represen-
tational scheme in implementation blocks). To address this ques-
tion, we calculated average β images across the five experimental
runs pertaining to each block type (implementation vs. memor-
ization), trial phase (instruction phase vs. delay), and instruction
category (face instructions vs. house instructions). We then
extracted voxels corresponding to a composite volume covering
all of the frontoparietal ROIs (i.e., bilateral IFJ, IFS, and IPS), and es-
timated the similarity between thedifferent conditionsvia Pearson

correlations. Correlation values were averaged within subjects
across face and house instructions, normalized via Fisher’s trans-
formation, and compared via paired-samples t-tests.

Results
Behavioral Results

The RT analysis revealed a significant main effect of BLOCK TYPE
(F1,22 = 355.457, P < 0.001, η2 = 0.942), reflecting faster responses in
implementation blocks than in memorization blocks (see
Table 1). Importantly, neither the main effect of INSTRUCTION
CATEGORY (F1,22 = 2.550, P = .125, η2 = 0.104) nor the interaction
term was significant (F1,22 = 0.064, P = 0.803, η2 = 0.003). The ana-
lysis of performance accuracy revealed non-significant main
effects of BLOCK TYPE (F1,22 = 0.173, P = 0.681, η2 = 0.008) and
INSTRUCTION CATEGORY (F1,22 = 0.042, P = 0.840, η2 = 0.002). The
interaction term reached significance (F1,22 = 4.731, P = 0.041, η2=
0.177), but post hoc comparisons revealed that this merely re-
flected the converse directionality of non-significant differences
within both block types. That is, numerically there were fewer
errors with face instructions than with house instructions
in implementation blocks, while the reverse was observed in
memorization blocks (see Table 1). However, neither of these
within-block differences reached statistical significance (P-values
of both pairwise comparisons >0.212). Next, we compared RT
between face and house instructions within each participant to
evaluate the matching of instruction categories at an individual
level (see Materials and Methods section). Within each block
type, one-way ANOVAs between RT of correct responses with
face and house instructions reached significance at P < 0.05 for
only 3 out of the 23 participants (removing these subjects from
the decoding analyses did not alter the pattern of results). We
consider this as confirmation that instruction categories were
successfully matched in terms of difficulty for both block types.

Accuracy on catch trials was also high in both block types
(see Table 1). The GLM revealed a main effect of INSTRUCTION
CATEGORY (F1,22 = 4.62, P < .001, η2 = 0.321) indicating that face
distractors were detected less often than house distractors
(see Table 1). Moreover, there was a significant interaction
between the 2 factors (F1,22 = 5.55, P < 0.001, η2 = 0.158), reflecting
that the accuracy difference between face instructions and house
instructions was stronger in implementation blocks (t22 = 4.49,
P < 0.001, d = 0.936) than inmemorization blocks (t22 = 1.61, P = 0.12,
d = 0.254).

ROI-based Decoding Analyses

The GLM of decoding accuracies within the predefined ROIs
revealed a significant main effect of TRIAL PHASE (F1,22 = 183.033,

Table 1 Behavioral performance (values are means and standard
errors)

Implementation Memorization

RT (ms) % Correct RT (ms) % Correct

Regular trials
Mean 1043 (44) 89.3 (1.1) 1794 (41) 89.4 (0.9)
Face 1027 (42) 90.8 (1.2) 1780 (44) 88.4 (1.1)
House 1062 (49) 89.1 (1.5) 1807 (43) 90.5 (1.1)

Catch trials
Mean 80.8 (2.9) 78.8 (3.9)
Face 71.7 (4.5) 75.8 (5.8)
House 90.0 (2.5) 81.7 (3.5)
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P < 0.001, η2 = 0.893), reflecting greater accuracies during the
instruction phase than during the delay (t22 = 13.529, P < 0.001,
d = 2.821; instruction phase = 68%, delay = 53%) across ROIs. As
mentioned above, this is likely due, at least partly, to the absence
of visual stimulation in the delay that eliminates perceptual
confounds between instruction categories. The main effect of
ROI was significant as well (F1,22 = 71.110, P < 0.001, η2= 0.764), in-
dicating differential degree of pattern separation across the em-
ployed ROIs (IFS = 53%, IFJ = 56%, IPS = 57%, FFA = 61%, PPA = 75%).
The main effect of BLOCK TYPE was also significant (F1,22 = 8.479,
P = 0.008, η2 = 0.278), reflecting greater decoding accuracies in
implementation blocks than in memorization blocks (t22= 2.912,
P = 0.008, d = 0.612; implementation = 62%, memorization = 59%).
Importantly, the main effects of TRIAL PHASE and BLOCK TYPE
interacted (F1,22 = 10.893, P = 0.003, η2 = 0.331). Inline with our ex-
pectations, decoding accuracies did not differ between block
types during the instruction phase (t22= 0.485, P = 0.633, d = 0.102;
implementation = 68%, memorization = 68%), but in the delay they
were significantly greater and only above-chance level in imple-
mentation blocks (t22= 3.479, P = 0.002, d = 0.731; implementation =
56%, memorization = 50%; see Fig. 3). The nonsignificant 3-way
interaction indicated that this pattern of results occurred rela-
tively uniformly across the different ROIs (F1,22 = 1.405, P = 0.248,
η2 = 0.058; see Fig. 3 for an illustration). Note that a more detailed
GLM that contained the additional factor HEMISPHERE (left vs.
right) only revealed a significant main effect of HEMISPHERE
(F1,22 = 31.58, P < .001, η2 = 0.482; left hemisphere = 59%; right
hemisphere = 62%), but no significant interaction term involving
the factors HEMISPHERE and BLOCK TYPE (all F-values <1).

Accordingly, the block type manipulation did not affect ROIs in
the left and right hemisphere differentially.

After establishing this delay-specific effect of the block type
manipulation on instruction coding, we sought to further rule
out that the differential classification was driven by differences
in task difficulty (see part on internal validation in the Materials
and Methods section). To this end, we correlated RT-differences
between face instructions and house instructions (recoded as ab-
solute values) with delay-related decoding accuracies of each
ROI, separately for both block types. None of these correlations
reached significance, despite using uncorrected thresholds
(implementation: all P-values >0.531, memorization: all P-values
>0.127). Notably, the same pattern was observed when perform-
ance accuracy (implementation: all P-values >0.367, memoriza-
tion: all P-values >0.243), IES (implementation: all P-values
>0.090, memorization: all P-values >0.279), or performance
accuracy on catch trials (implementation: all P-values >0.145,
memorization: all P-values >0.122) were subjected to the ana-
lysis. These findings emphasize that decoding of instruction
category information is very unlikely to result from subtle per-
formance confounds.

Whole-brain Decoding Analyses

Overall, thewhole-brain decoding analyses largely confirmed our
selection of ROIs and revealed only few additional involved areas
(see Fig. 4 and Tables 2 and 3). During the instruction phase, de-
coding accuracywas above chancemost strongly in posterior cor-
tices, centered in the parahippocampal gyri and spreadingwidely
across occipital, temporal, and parietal lobes. In addition, in-
struction category could be decoded from activity in the frontal
lobe. Bilateral clusters were located along the IFS and extended
onto the precentral gyri. An additional cluster was located in
the dorsal frontomedian cortex (dFMC). These results were very
similar for both block types, and only few clusters were identified
that exhibited increased instruction category information during
implementation blocks. These clusters were located in the right
premotor cortex, the cingulate gyrus/caudate, the right anterior
PFC, and the lingual gyrus. No area was identified as carrying
more information during memorization blocks. As in the ROI
analysis, the results differed more clearly between block types
during the delay. In memorization blocks, decoding accuracy
was above chance only in bilateral clusters within mid-occipital
and posterior parietal cortices. In contrast, in implementation
blocks, decoding accuracy was above chance throughout most
of the occipital lobe and in several frontal and parietal clusters.
Contrasts between block types confirmed that instruction cat-
egory was represented more strongly during implementation
blocks in a number of occipital, parietal, and frontal regions,
among them the left IPS and the right IFJ. No region was found
to carry stronger information about instruction categories in
memorization blocks (Fig. 4).

Decoding in Additional Regions With Univariate Effects

We performed follow-up univariate analyses of delay activity to
identify additional brain areas that show delay-related increases
in average activation, relative to the ITI (see Materials and Meth-
ods section). Contrasts within each block type and the conjunc-
tion analysis across both block types consistently revealed a
number of further areas, among them the pre-SMA (6, 5, 52),
the anterior insula (left: −30, 20, 4; right: 33, 26, 4), the right pre-
motor cortex (33, −13, 64), and 2 subcortical clusters centered at
the caudate heads and extending caudally to the thalamus

Figure 3. Decoding accuracies within ROIs separately for the instruction phase

(upper panel) and for the delay (lower panel). ∼P < 0.10, *P < 0.05, **P < 0.01,

***P < 0.001.
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(left: −12, 2, 4; right: 12, 5, 4; see Supplementary Figs 2 and 3 for
details). Follow-up decoding analyses, based on spherical ROIs
(radius = 10 mm, size = 515 voxels) centered at the peaks of each

cluster, showed that activity in none of these regions carried
above-chance information about instruction category (all P-va-
lues >0.242). This indicates that these regions might be involved
in content-unspecific preparatory processes.

External Validation

Next, we examined the relevance of the MVPA results for task
performance by means of correlational analyses (see Materials
and Methods section). Consistent with our hypothesis that prep-
aration elicits direct associations between target representations
and response codes, there was a significant correlation between
delay-related decoding accuracies in dedicated visual regions
and RT in implementation blocks (r =−0.441, P = 0.029, R2 = 0.188),
while controlling for instruction-related decoding accuracy in
visual regions. The negative magnitude reflects that better dis-
crimination of instruction categories in these regions was asso-
ciated with faster responses. No such correlation was found in
memorization blocks (r = −0.001, P = 0.999, R2 < 0.001), despite
equivalent variance in terms of both RT and decoding accuracy
in both block types (Mauchly tests of all pairwise comparisons
were non-significant). We tested the difference between these 2
correlations for significance using Steiger’s method (see Steiger
1980) that applies an asymptotic z-test after normalizing correla-
tions via Fisher’s transformation. This confirmed that the differ-
ence between the 2 correlation coefficients was significant
(z = 2.045; P = 0.023; see Fig. 5).

Figure 4. The upper panel illustrates thewhole-brain decoding results from the instruction phase, separately for implementation blocks (A) andmemorization blocks (B).

The lower panel illustrates thewhole-brain decoding results from the delay, separately for implementation blocks (C) andmemorization blocks (D). Note: All contrasts are

based on a voxel threshold of P < .001, and a minimal cluster extent of 22 contiguous voxels.

Table 2 Results of the whole-brain decoding analysis during the
instruction phase

Area Hemisphere Peak (MNI) TMax Extent
(voxels)

Implementation
OTC L/R 36 −67 −8 57.06 22 177
PMD/IFJ/IFS R 39 −4 49 8.08 1774

L −42 14 28 5.44 1081
dFMC L/R −3 50 34 4.89 126

Memorization
OTC L/R 45 −73 −7 39.07 23 126
PMD/IFJ/IFS R 42 23 22 8.28 1825

L −45 26 19 6.04 1163
dFMC L/R 6 59 13 8.15 390

Implementation > memorization
Cingulate/caudate R 9 2 25 4.54 69
PMD R 36 −13 49 4.22 50
Anterior PFC R 18 35 −8 3.95 36
Lingual gyrus L −3 −82 −5 3.82 24

OTC, occipitotemporal cortex; PMD, dorsal premotor cortex; IFJ, inferior frontal

junction; IFS, inferior frontal sulcus; dFMC, dorsal frontomedian cortex.
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Following up on this finding, we also wanted to explore the
putative role of frontoparietal regions in the genesis of this
state. Given our assumption that these regions are involved in
constructing task sets based on instruction, one could expect a
similar association between neural specificity in these areas
during the delay and RT.We tested this idea bymeans of a partial
correlation analysis, analogously to the one described above (i.e.,
we correlated delay-related decoding accuracy in one large vol-
ume covering all frontoparietal areas with RT, while controlling
for variance related to decoding accuracies from the instruction
phase). However, no significant correlations between decoding
results and performance were observed (both P-values >0.433).
We therefore addressed an alternative possibility, namely that

frontoparietal areas contribute to performance indirectly by pro-
actively adjusting sensorimotor pathways during the encoding
stage (see Ruge andWolfensteller (2010) for evidence that frontal
activity during encoding can contribute to the quality of later
task performance). To examine this idea, we correlated decoding
accuracies in frontoparietal regions during the instruction phase
with delay-related decoding accuracies in visual areas, while
controlling for variance related to instruction-related decoding
accuracies. In partial support for this hypothesis, there was
a marginally significant correlation in implementation blocks
(r = 0.395, P = 0.069, R2 = 0.155), but not in memorization blocks
(r = −0.014, P = 0.988, R2 = 0.001), and a post hoc comparison re-
vealed a marginally significant difference between these 2 corre-
lations (z = 1.823; P = 0.068).

Pattern Similarity Analysis

Finally, to further elucidate the nature of differential instruc-
tion coding, we compared the similarity of frontoparietal acti-
vation patterns from the instruction phase and the delay of
both block types (see Materials and Methods section). As
shown in Fig. 6, similarity between block types was generally
greater during the instruction phase than during the delay
(t22 = 6.148, P < 0.001, d = 1.282). Pattern stability tended to be
greater in memorization blocks than in implementation blocks
(t22 = 2.041, P = 0.053, d = 0.426). Finally, cross-conditional simi-
larities differed significantly with greater similarity between
delay-related patterns from memorization blocks and instruc-
tion-related patterns from implementation blocks than for the
reverse cross-correlation (t22 = 3.648, P < 0.001, d = 0.761). This
pattern of results clearly favors the transformation hypothesis
and suggests that the state of task readiness that is established
in the delay phase of implementation blocks reflects the emer-
gence of a distinct cognitive state.

Of note, an analogous analysis of pattern similarity within
dedicated visual areas revealed only a significant difference
between the 2 trial phases with greater similarity between
block types during the instruction phase than during the
delay (t22 = 9.566, P < 0.001, d = 1.995). No significant differences
were found in terms of pattern stability within-block types
(t22 = 1.396, P = 0.177, d = 0.291) or in terms of cross-conditional
similarity (t22 = 1.113, P = 0.278, d = 0.232). In line with results
from recording studies in monkeys, these findings suggest that
the tuning of frontoparietal regions is highly flexible and can

Figure 5. Scatter plots displaying the partial correlations between decoding accuracies in dedicated visual areas (average across FFA and PPA), and reaction time (average

across face instructions and house instructions), while controlling for variance related to decoding accuracies in the instruction phase, separately for implementation

blocks (A) and memorization blocks (B).

Table 3 Results of thewhole-brain decoding analysis during the delay

Area Hemisphere Peak (MNI) TMax Extent
(voxels)

Implementation
OTC L/R 33 −85 10 16.54 12 422
IFJ R 42 8 25 5.09 60
SFS L −33 35 52 4.61 36

R 27 44 52 4.28 28
PCC L/R 6 −49 43 4.57 28
dFMC L/R −12 53 37 4.28 121

Memorization
OTC L −36 −85 19 6.90 578

R 36 −79 22 5.85 1026
Fusiform gyrus L −45 −76 −14 3.95 28

Implementation >memorization
OTC L/R 30 −88 10 6.18 2980
PMD R 33 −7 37 4.65 50
IPS L −51 −49 49 4.62 77
SFS L −27 32 52 4.25 93
IFJ R 42 11 25 4.10 38
MTG L −45 −70 25 3.94 34
Caudate R 21 −28 19 3.88 85
IPL R 57 −46 25 3.74 28
SPL R 12 −58 64 3.62 48

OTC, occipitotemporal cortex; PMD, dorsal premotor cortex; IFJ, inferior frontal

junction; SFS, superior frontal sulcus; PCC, posterior cingulate cortex; dFMC,

dorsal frontomedian cortex; IPS, intraparietal sulcus; MTG, middle temporal

gyrus; IPL, inferior parietal lobule; SPL, superior parietal lobule.
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represent the same task parameters in dynamically changing
neural codes (Crowe et al. 2010; Stokes et al. 2013, Stokes 2015),
whereas the response profile in visual regions is more fixed and
stimulus-grounded.

Discussion
We compared the neural representation of novel SR mapping in-
structions that were either prepared for execution or memorized
for recognition. Although the instructed information was suc-
cessfully maintained in both cases, preparation enhanced the
discriminability of instruction categories in a set of frontal, par-
ietal, and visual regions during the delay between task instruc-
tion and application. Moreover, only during preparation was the
coding strength in visual regions, implicated in processing the in-
structed target stimuli, associated with the speed of perform-
ance. Frontoparietal regions, on the other hand, appeared to be
involved in creating this state during both encoding and delay
phases. Below, we discuss the implications of our findings
along with possible directions for further inquiry.

A Mechanism for Proactive Control Over Novel Tasks

Patients with frontal lobe damage often exhibit a striking mis-
match between intact formal knowledge regarding how to be-
have in a novel task environment and a severely perturbed
capability to bring this knowledge into control of behavior (Dun-
can et al. 1996, 1997; Luria 1966). While such cases imply that im-
plementation of novel tasks is supported by some sort of
knowledge transformation, they leave open how exactly this pro-
cess should be conceived. Our results indicate that proactive con-
trol over novel task demands can take the form of a “prepared
reflex” (Hommel 2000; Meiran et al. 2014). That is, task prepar-
ation appears topromote the integrationofperceptual target repre-
sentations andmotor response codes intoa compound conditional
action plan that proactively facilitates performance. Behaviorally,
this was evidenced by the observation that instructed stimuli
gained the power to automatically activate the associated re-
sponses in a secondary task, only when the instruction was pre-
pared, but not when it was memorized (similar to Liefooghe et al.
2012). At the brain level, we observed that the neural specificity
within functionally dedicated visual areas during the delay was

tied to the speed of task application. This correlation was found
only in implementation blocks and thus likely reflects a neuronal
signature of preconfigured sensorimotor pathways wherein the fi-
delity of the target representation during the delay determines the
automaticity of subsequent performance.

How is this state of task readiness established? Evidently, fron-
toparietal regions, play a central role in this respect. Previous
studies have shown that these regions are reliably activated
when novel task instructions are received (Ruge andWolfensteller
2010; Dumontheil et al. 2011; Hartstra et al. 2011; Cole, Reynolds,
et al. 2013) and some further evidence exists that this activity is
related to the quality of later task implementation (Ruge and
Wolfensteller 2010). Our study extends these findings by pointing
toward a mechanism by which these regions may facilitate task
performance. First, we observed that early coding of instruction
categories in these regions tended to be associated with better
pattern separation in visual areas during the subsequent delay
(which was in turn associated with performance). Hence, fronto-
parietal regionsmay facilitate novel task performance as early as
during encoding, by selectively tuning representations in sensory
regions based on the instructed task demands. There is indeed
copious evidence that frontoparietal regions are critically in-
volved in stimulus encoding (e.g., Gazzaley et al. 2007; Mayer
et al. 2007; Chadick and Gazzaley 2011). However, the precise na-
ture of this contribution remains difficult to infer. Discrimination
of instruction-categories during encoding could reflect either
specificity for the stimulus content (Golby et al. 2001; Johnson
et al. 2003) or instead the utilization of domain-specific control
processes such as different amounts of semantic vs. spatial ana-
lysis, verbal rehearsal, etc. (Kuhl et al. 2012). Beyond encoding,
therewas also robust category discriminationwithin frontoparie-
tal areas during the delay in implementation blocks but not in
memorization blocks. This finding is of particular interest in
light of current debates on the neural mechanisms supporting
short-terms memory storage (Sreenivasan, Curtis, et al. 2014;
D’Esposito and Postle 2015). Frontoparietal regions typically ex-
hibit robust activation increases throughout memory delays,
yet MVPA studies indicate that this activity carries only weak in-
formation about to-be-memorized contents (see D’Esposito and
Postle 2015), while codingmore robustly for abstract, goal-related
variables such as task rules that are used for stimulus classifica-
tion (Bode and Haynes 2009; Woolgar, Hampshire, et al. 2011;
Woolgar, Thompson, et al. 2011; Zhang et al. 2013; Waskom
et al. 2014; Etzel et al. 2015). Hence, compared with the represen-
tation of specific task elements such as particular stimuli or re-
sponses, frontoparietal activity seems to be more diagnostic
about the abstract, context-based connections among those ele-
ments (e.g., Bode and Haynes 2009; Woolgar, Hamsphire, et al.
2011; Woolgar, Thompson, et al. 2011). This resonates well with
our interpretation of the differential decoding results during
the delay phase; depending on the block type, the same instruc-
tion screens appeared to be represented either procedurally as an
SR mapping rule, or semantically as a visual memorandum. Evi-
dently, the former is represented more distinctly in frontoparie-
tal regions.

The Nature of Semantic Task Representations

Given the considerations above, an important question concerns
the exact nature of instruction coding within memorization
blocks. In these blocks, a striking data pattern was observed: on
the one hand, the absence of response priming in the pilot
study and the drop in delay-related decoding accuracy consist-
ently indicated that no active SR mapping representations were

Figure 6. Results of the pattern similarity analysis, indicating the similarity of

frontoparietal activation patterns between the different trial phases (instruction

vs. delay) and block types (implementation vs. memorization). Values reflect

z-normalized Pearson correlations (see Materials and Methods section).
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established. On the other hand, participants were clearly able to
maintain the instructed information with equivalent accuracy
and frontoparietal regions were robustly activated during the
delay phase. This suggests that memorization blocks similarly
drew upon cognitive control processes, but that participants
were employing a different strategy with a different allocation
of frontoparietal resources.

How should this strategy be conceived? It has been argued
that preparatory coding schemes critically depend upon the in-
formation conveyed by the task cue, and upon the nature of an-
ticipated targets and distractors (Stokes 2011). Even though
identical instruction screens were used in both block types,
they provided participants with differential information about
the upcoming target phase. Implementation blocks allowed for
relatively specific predictions to be made, as only three different
outcomes were possible (2 targets and one distractor), each of
which was associated with a contingent response. This setting
clearly encourages instruction coding as a conditional action
plan and “motor imagery” as a suitable rehearsal strategy (Jean-
nerod and Decety 1995; Jeannerod and Frak 1999; Jeannerod
2001). In memorization blocks, the same facts about the instruc-
tion had to be maintained, but it was far less predictable
how these facts would have to be applied. The larger number of
possible probe screens (four on regular trials) and their greater
complexity may have called instead for a stable memory
representation of the instruction screen to be matched with the
probe screen. The fact that the instructed effectors were also
used to indicate the match–mismatch decision may further
have discouraged motor imagery of the SR mappings as a main-
tenance strategy. It is surprising nevertheless, that in the delay of
memorization blocks decoding accuracies fell to chance not only
in frontoparietal but also in someof the visual areas implicated in
visual short-term storage (significant decoding in PPA but not
FFA). Stronger decoding in these regions might be achieved
with individually tailored ROIs that are typically more sensitive
than group-based localizers (Saxe et al. 2006), though the same
localizer was appreciably accurate in implementation blocks.
This, along with the absence of regions coding specifically for
memorized instructions, suggests that visual instruction coding
was generally weaker in memorization blocks. Clearly, great
caution is warranted when interpreting a single negative result,
but these findings could be due to a greater reliance of rehearsal
processes on verbal codes that likely distinguish less between
face and house instructions than percept-like sensory codes.

Limitations and Future Directions

Our study contains several limitations worth noting that should
encourage further investigation. One central aspect concerns the
blocking of implementation and memorization demands. As
noted above, we deliberately chose this experimental design,
based on behavioral pilot studies, to prevent participants from
utilizing a single general strategy and thereby maximize the
power of our manipulation. Now, after delineating the general
signature of preparation on instruction coding, a promising
next step could be to translate our paradigm into event-related
designs where implementation and memorization demands
vary on a trial-by-trial basis. A particularly informative approach
could be to present task cues, signaling implementation versus
memorization demands, after the initial encoding of SRmapping
instructions. If feasible, such a procedure could be of great help in
further constraining the time period at which the formation of
task sets takes place, compared with our broader distinction be-
tween instruction and delay phases (we are grateful to an

anonymous reviewer for this suggestion). Another powerful
strategy to substantiate our findings could be to combine our de-
coding protocol with high temporal resolution techniques such
asmagnetoencephalography in order to trace gradual transitions
through representational states over the time course of the pre-
target phase (see Stokes et al. 2013, 2015; King and Dehaene
2014). Likewise, analyses of functional connectivity could be
employed to further delineate the neural sources of top-down
control under implementation and memorization demands
(Zanto et al. 2010; Baldauf and Desimone 2014). Finally, future
studies should also attempt to circumvent binary classifications
between disparate stimulus categories such as faces and houses.
Although the same stimulus categories were used in both block
types, and diverse control analyses consistently indicated that
our decoding resultswere not driven by performance differences,
we cannot rule out with certainty that general differences be-
tween the stimulus materials (e.g., the greater biological signifi-
cance of face stimuli) may have impacted the classification to
some degree. Future studies could address this issue by using
more similar stimulus types (e.g., different types of objects; simi-
lar to Lee et al. 2013) and/or by includingmore than 2 categories of
instructions (see Cole, Reynolds, et al. 2013).

Conclusion

In summary, the present study suggests that the implementation
of newly instructed goal-directed behavior is supported by the
transformation of semantic task knowledge into a temporary
task set that proactively tunes sensorimotor processing in line
with anticipated demands. These task sets optimize subsequent
performance and can be distinguished from semantic memory
representations of the same instructions. Together, our findings
shednew light onhow instructions are converted into specific ac-
tion plans and also help in disentangling the neuralmechanisms
that support memory storage and task control.
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